

DPP - 6 (Geometrical Optics & Dispersion)

(b)
$$\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

(c) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(d) $\sin^{-1}\left(\frac{1}{2}\right)$

Q 5. A rectangular glass slab ABCD of refractive index n_1 is immersed in water of refractive index $n_2(n_1 > n_2)$. A ray of light is incident at the surface AB of the slab as shown. The maximum value of the angle of incidence α_{max} such that the ray comes out only from the other surface CD is given by?

-- n₁ n_2 (a) $\sin^{-1}\left[\frac{n_1}{n_2}\cos\left\{\sin^{-1}\left(\frac{n_2}{n_1}\right)\right\}\right]$ (b) $\sin^{-1} \left[n_1 \cos \left\{ \sin^{-1} \left(\frac{1}{n_2} \right) \right\} \right]$ (c) $\sin^{-1}\left(\frac{n_1}{n_2}\right)$ (d) $\sin^{-1}\left(\frac{n_2}{n_1}\right)$

- A ray of light from a denser medium strikes a rarer medium at an angle of Q 6. incidence i. If the reflected and refracted rays are mutually perpendicular to each other, what is the value of critical angle?
 - (a) $\tan^{-1}\left[\frac{1}{\tan i}\right]$

 - (b) $\sin^{-1}[\tan i]$ (c) $\sin^{-1}\left(\frac{1}{\sin i}\right)$
 - (d) None of these
- Q 7. A cut diamond (or air bubble in water) shines brilliantly due to:
 - (a) Its molecular structure
 - (b) Absorption of light
 - (c) Total internal reflection
 - (d) Some inherent property
- A point source of light is placed 4 m below the surface of water of $\mu = \frac{5}{2}$. The Q 8. minimum diameter of a disc, which should be placed over the source, on the surface of water to cut off all light coming out of water, is: (a) 1 m (b) 6 m (c) 4 m (d) 3 m

- Q 9. A ray of light travels in a medium whose refractive index with respect to air is $\sqrt{2}$. When light is incident at an angle of 45° to the surface then which of the following is correct?
 - (a) angle of refraction is 45°
 - (b) total internal reflection takes place
 - (c) angle of refraction is 90°
 - (d) the path of ray is un deviated
- Q 10. An optical fibre consists of core of μ_1 surrounded by a cladding of $\mu_2 < \mu_1$. A beam of light enters from air at an angle α with axis of fibre. The highest α for which ray can be travelled through fibre is

Q 11. A fish is a little away below the surface of a lake. If the critical angle is 49°, then the fish could see things above the water surface within an angular range of θ_o where

Q 12. Given a slab with index n=1.33 and incident light striking the top horizontal face at angle i as shown in figure. The maximum value of i for which total internal reflection occurs is

(a) $\sin^{-1} \sqrt{0.77}$ (c) $\sin^{-1} 0.77$

Answer Key

Q.1 b	Q.2 a	Q.3	b	Q.4 c	Q.5 a
Q.6 b	Q.7 c	Q.8	b	Q.9 c	Q.10 b
Q.11 c	Q.12 a				